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Abstract We study the problem of the intraday short-term volume forecast-
ing in cryptocurrency exchange markets. The predictions are built by using
transaction and order book data from different markets where the exchange
takes place. Methodologically, we propose a temporal mixture ensemble model,
capable of adaptively exploiting, for the forecasting, different sources of data
and providing a volume point estimate, as well as its uncertainty. We provide
evidence of the outperformance of our model by comparing its outcomes with
those obtained with different time series and machine learning methods. Fi-
nally, we discuss the difficulty of volume forecasting when large quantities are
abruptly traded.

1 Introduction

Cryptocurrencies recently attracted massive attention from researchers in sev-
eral disciplines such as finance, economics, and computer science. It origi-
nated from a decentralized peer-to-peer payment platform through the Inter-
net. When new transactions are announced on this network, they have to be
verified by network nodes and recorded in a public distributed ledger called
the blockchain [1]. Cryptocurrencies are created as a reward in the verification
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competition in which users offer their computing power to verify and record
transactions into the blockchain. Bitcoin is one of the most prominent decen-
tralized digital cryptocurrencies and it is the focus of this paper, although the
model developed below can be adapted to other cryptocurrencies with ease,
as well as to other ”ordinary” assets (equities, futures, FX rates, etc.).

The exchange of Bitcoins with other fiat or cryptocurrencies takes place
on exchange markets, which share some similarities with the foreign exchange
markets [2]. These markets typically work through a continuous double auc-
tion, which is implemented with a limit order book mechanism, where no
designated dealer or market maker is present and limit and market orders to
buy and sell arrive continuously. Moreover, as observed for traditional assets,
the market is fragmented, i.e. there are several exchanges where the trading
of the same asset, in our case the exchange of a cryptocurrency with a fiat
currency, can simultaneously take place.

The automation of the (cryptocurrency) exchanges lead to the increase
of the use of automated trading [3, 4] via different trading algorithms. An
important input for these algos is the prediction of future trading volume.
This is important for several reasons. First, trading volume is a proxy for
liquidity which in turn is important to quantify transaction costs. Trading
algorithms aim at minimizing these costs by splitting orders in order to find
a better execution price [5, 6] and the crucial part is the decision of when
to execute the orders in such a way to minimize market impact or to achieve
certain trading benchmarks (e.g. VWAP) [7–9]. Second, when different market
venues are available, the algorithm must decide where to post the order and
the choice is likely the market where more volume is predicted to be available.
Third, volume is also used to model the time-varying price volatility process,
whose relation is also known as Mixture of Distribution Hypothesis” [10].

In this paper, we study the problem of intraday short-term volume predic-
tion on cryptocurrency markets, intending to obtain not only point estimate
but also an interval of uncertainty [11–14]. Moreover, conventional volume
predictions focuses on using data or features from the same market. Since
cryptocurrency markets are traded on several markets simultaneously, it is
reasonable to use cross-market data not only to enhance the predictive power,
but also to help understanding the interaction between markets. In particular,
we investigate the exchange rate of Bitcoin (BTC) with a fiat currency (USD)
on two liquid markets: Bitfinex and Bitstamp. The first market is more liquid
than the second, since its traded volume in the investigated period is 2.5 times
larger1. Thus one expects an asymmetric role of the past volume (or other
market variables) of one market on the prediction of volume in the other mar-
ket. We propose a class of models, termed temporal mixture ensemble models,
to build predictions of volume and we compare out-of-sample forecasts with
those obtained with some traditional time-series approaches and with a ma-
chine learning benchmark (gradient boosting).

1 Recently, there have been few reports that are showing fake reported volume for certain
Bitcoin exchange markets. In this study, we are working with Bitcoin exchange markets that
have been independently verified to report true values [15].
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Specifically, the contribution of this paper can be summarized as follows:

– We formulate the cross-market volume prediction as a supervised multi-
source learning problem. We use multi-source data, i.e. transactions and
limit order books from different markets, to predict the volume of the target
market.

– We propose the temporal mixture ensemble model, which models individual
source’s relation to the target and adaptively adjusts the contribution of
the individual source to the target prediction.

– By equipping with modern ensemble techniques, the proposed model can
further quantify the predictive uncertainty consisting of the epistemic and
aleatoric component, for volume and source contributions.

– As main benchmarks for volume dynamics, we use different time-series and
machine learning models (clearly with the same regressors/features used in
our model). We observe that our dynamic mixture ensemble is often having
superior out-of-sample performance on conventional prediction error met-
rics e.g. root mean square error (RMSE) and mean absolute error (MAE).
More importantly, it presents much better calibrated results, evaluated by
metrics taking into account predictive uncertainty, i.e. normalized negative
log-likelihood (NNLL), uncertainty interval coverage (IC) and width (IW).

– We show that the main difficulty in predicting volume (for all models) is
related to very large and unexpected volumes. Outside these situations,
our model strongly outperforms the other benchmarks.

The paper is organized as follows: in Section 2 we present the investigated
markets, the data, and the variables used in the modeling. In Section 3 we
present our benchmark models. In Section 4 we present our empirical investi-
gations on the cryptocurrency markets for the prediction of intraday market
volume. Finally, Section 5 presents some conclusions and outlook for future
work.

2 Multiple market cryptocurrency data

Our empirical analyses are performed on a sample of data from two exchanges,
Bitfinex2 and Bitstamp3, where Bitcoins can be exchanged with US dollars.
These markets work through a limit order book, as many conventional ex-
changes. The investigated period is June-November 2018. The main analyses
are performed on five-minute intervals, thus the length of the investigated time
series is 34, 346, since the markets are open 24/7. In the Appendix we also show
some analyses performed at one minute resolution, raising the number of data
points to 171k.

For each of the two markets we consider two types of data: transaction
data and limit order book data.

2 https://www.bitfinex.com
3 https://www.bitstamp.net
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Fig. 1: The intraday average 1-min transaction volume plus 1 std of BTC/USD
rate in Bitfinex market over the period from June 2018 to November 2018.

From transaction data we extract the following features for each 5-min
interval:

– Buy volume - in BTC units of executed transactions
– Sell volume - in BTC units of executed transactions
– Volume imbalance - absolute difference between buy and sell volume
– Buy transactions - number of executed transactions on buy side
– Sell transactions - number of executed transactions on sell side
– Transaction imbalance - absolute difference between buy and sell number

of transactions

From limit orderbook data we extract the following features [16, 17],
obtained by averaging the one minute variables in each 5-min interval:

– Spread is the difference between the highest price that a buyer is willing to
pay for a BTC (bid) and the lowest price that a seller is willing to accept
(ask).

– Ask volume is the number of BTCs on the ask side of order book.
– Bid volume is the number of BTCs on the bid side of order book.
– Imbalance is the absolute difference between ask and bid volume.
– Ask/bid Slope is estimated as the volume until δ price offset from the best

ask/bid price. δ is estimated by the bid price at the order that has at least
1%, 5% and 10 % of orders with the highest bid price.

– Slope imbalance is the absolute difference between ask and bid slope at
different values of price associated to δ. δ is estimated by the bid price at
the order that has at least 1%, 5% and 10 % of orders with the highest bid
price.
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The target variable yt that we aim at forecasting is the sum of the two first
features of transaction data of the target market, i.e. the sum of buy and sell
volume.

In the proposed modeling approaches (described in Section 3) we consider
different sources that at each time can affect the probability distribution of
trading volume in the next time interval in a given market. Given the setting
presented above, in our analysis, there are S = 4 sources, namely one for
transaction data and one for limit order book data for the two markets. We
indicate with xs,t ∈ Rds the data from source s at time step t, and ds the
dimensionality of source data s. Given the list of variables presented above,
we have ds = 6 when the source is transaction data in any market, while
ds = 13 for orderbook data.

Figure 1 shows the average 1-min transaction volume as a function of
the time of the day. We observe the lack of a strong intra-daily ”U-shape”
component, which is instead observed in other asset classes [18] and used in
intraday volume modeling.

3 Models

Econometric modeling of intra-daily trading volume relies on a set of empirical
regularities [7–9] of volume dynamics. These include fat tails, strong persis-
tence and an intra-daily clustering around the ”U”-shaped periodic compo-
nent. Brownlees et al. [7] proposed Component Multiplicative Error Model
(CMEM), which is the extension of Multiplicative Error Model (MEM) [19].
The CMEM volume model has a connection to the component-GARCH [20]
and the periodic P-GARCH [21]. Satish et al. [8], proposed four-component
volume forecast model composed of: (i) rolling historical volume average, (ii)
daily ARMA for serial correlation across daily volumes, (iii) deseasonalized
intra-day ARMA volume model and (iv) a dynamic weighted combination of
previous models. Chen et al. [9], simplify the multiplicative volume model [7]
into an additive one by modeling the logarithm of intraday volume with the
Kalman filter.

Given the lack of intraday periodicity (see Fig. 1) in the investigated cryp-
tocurrency markets and the need of adding external multi-source regressors,
our econometric benchmarks are AR-GARCH type models, described in the
next subsection. The machine learning benchmark is the gradient boosting
method, while our main model is the temporal mixture ensemble model, which
naturally allows using multi-source data. When multi-source temporal data are
from different sources, xs,t indicates the data from source s at time step t and
xs,t could be multi-dimensional, i.e. xs,t ∈ Rds , where ds is the data dimen-
sionality of source s. With these multi-source data, we aim at predicting the
future value of the target variable yt.

In this paper, the target variable is the 5 min trading volume in one of
the two cryptocurrency markets using data from both markets. Regarding
the multi-source data, on one hand, it includes the feature time series from
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the target market. This data is believed to be directly correlated with the
target variable. On the other hand, there is an alternative market, which could
interact with the target market. Together with the target market, the feature
time series of this alternative market constitute the multi-source data. For
each market, we use features from both transaction and order book data. The
experiment section 4 provides more details about markets, transactions, order
book data, and features.

3.1 Econometric benchmarks

As mentioned, our benchmarks belong to the AR-GARCH class with external
regressors. More specifically, the volume process yt is modelled with the fol-
lowing autoregressive process (AR(p)) with external regressors:

yt = µ+

p∑
i=1

φiyt−i +

S∑
s=1

ds∑
j=1

ψs,jxs,t−1(j) + εt, (1)

where xs,t−1(j) denotes the j-th feature from external feature vector xs,t−1
at time4 t − 1 from source s. The total number of sources S = 4, which
includes transactions and limit order book data of the two markets. Since
volume exhibits time clustering, we assume that the residuals εt are modelled
by a GARCH process [7–9]:

εt = σtet et ∼ N (0, 1) (2)

σλt = ω + αελt−1 + γ|εt−1|λ1[εt−1<0] + βσλt−1 (3)

For λ = 2, γ = 0, we get standard GARCH(1,1) model [22]. In case of
λ = 2, γ = 1, we get GJR-GARCH model [23], that captures asymmetry in
positive and negative shocks5.

3.2 Machine learning benchmark

We take the gradient boosting machine [25] as a machine learning baseline.
Gradient boosting approximates the volume ŷt = F (xt) with a function that
has the following additive expansion (similar to other functional approximation
methods like radial basis functions, neural networks, wavelets, etc.):

ŷt = F (xt) =

M∑
m=0

βmh(xt; am), (4)

4 Note, that we have also evaluated all ARX-GARCH models by using autoregressive
external features {xs,t−i(j)}pi=1 terms, but results were not better and training time and
convergence become problematic.

5 We also tested the case of λ = 1, γ = 1 corresponding to the Threshold heteroskedastic
models [24], but the model displays sometimes convergence problems, thus we decided not
to present it. Anyhow the forecasting ability of this model is comparable to that of the other
GARCH models.
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where xt denotes the feature vector, that is constructed as a concatenation
from different sources6 xt = (xs=1,t,xs=2,t,xs=3,t,xs=4,t) .

The functions h(xt; am) are also called ”base learners” and in our case they
are regression trees with parameters am and βm is a simple scalar.

Each base learner h(xt; am) partitions the feature space xt ∈ X into L-
disjoint regions {Rl,m}L1 and predicts a separate constant value in each:

h(xt; {Rl,m}L1 ) =

L∑
l=1

ȳl,m1(xt ∈ Rl,m), (5)

where ȳl,m is inferred during the learning phase along with the expansion co-
efficients {βm} and the parameters of regression trees am. Learning procedure
starts by defining the loss function Ψ(yt, F (xt)) e.g. squared loss

∑
t(yt −

F (xt))
2 and initial regression tree F0(xt). Then, for each m = 1, ...,M , we

solve the optimization problem:

(βm,am) = arg min
β,a

T∑
t=1

Ψ(yt, Fm−1(xt) + βh(xt; a)) (6)

and

Fm(xt) = Fm−1(xt) + βmh(xt; am). (7)

See Appendix for more details. Furthermore, note that different variants of
tree boosting have been empirically proven to be state-of-the-art methods in
predictive tasks across different machine learning challenges [26,27] and more
recently in finance [28,29].

3.3 Temporal mixture ensemble

In this paper, we construct an intra-daily dynamic mixture ensemble model,
belonging to the class of of mixture models [30–34], that takes previous trans-
actions and limit order book data [16,17] from multiple markets simultaneously
into account. Though mixture models have been widely used in machine learn-
ing and deep learning [35–37], they have been hardly explored for prediction
tasks in cryptocurrency markets. Moreover, our proposed temporal mixture
ensemble can provide predictive uncertainty of the target volume by the use of
Stochastic Gradient Descent (SGD) based ensemble techniques [38–40]. Pre-
dictive uncertainty reflects the confidence of the model over the prediction. It
is valuable extra information for model interpretability and reliability.

In principle, the temporal mixture ensemble exploits latent variables to
capture the contributions of different sources of data to the future evolution
of the target variable. The source contributing at a certain time depends on
the history of all the sources.

6 Note, that we have omitted the transpose operators in the next line, as the concatenation
is simple operation and to avoid confusion with index of time.
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More quantitatively, the generative process of the time series of the target
variable conditional on multi-source data {x1,t, · · · ,xS,t}Tt=0 is formulated as
the following probabilistic mixture process:

p(y1, · · · , yT |{x1,t, · · · ,xS,t}Tt=0)

=
∑
z1

· · ·
∑
zT

p(y1, · · · , yT , z1, · · · , zT | {x1,t, · · · ,xS,t}Tt=0)

=
∏
t

S∑
zt=1

pθ(yt|zt = s,xs,<t) · Pω(zt = s |x1,<t, · · · ,xS,<t).

(8)

The latent variable zt is a discrete random variable defined on the set of
values {1, · · · , S}, each of which represents the corresponding data source.
The quantity pθ(yt|zt = s,xs,<t) models the predictive probabilistic density
of the target based on the historical data xs,<t from a certain source s. The
quantity7 Pω(zt = s |x1,<t, · · · ,xS,<t) is time-varying dependent on multi-
source data and adaptively adjusts the contribution of the data source specific
density pθ(yt|zt = s,xs,<t) at each time step. Clearly, it holds

∑S
s=1 Pω(zt =

s |x1,<t, · · · ,xS,<t) = 1. Finally, θ and ω in Eq. 8 represent the parameters of
the probabilistic functions, which are learned in the training phase discussed
below.

In the following, we will first present the inference procedure by assuming
the posterior distribution of model parameters given training data. This infer-
ence process gives rise to various predictions on mean and uncertainties of the
target variable. Then we will describe the learning algorithms to obtain the
posterior.

3.4 Inference

In this part, we present Bayesian style inference assuming given samples of
model parameters. In Section 3.5, we will describe approximate samples of
model parameters by ensemble methods. Bayesian inference gives rise to a set
of realizations of the models by the posterior distribution of model parame-
ters. Through a probabilistic ensemble of these model realizations, we harvest
accurate predictions as well as additional insights into the data and model.
This will also be demonstrated in the experiment section.

Specifically, we denote by Θ = {θ, ω} the overall set of parameters in the
mixture model. The training data is referred to as D = {yt,x1,t, · · · ,xS,t}Tt=1.
The posterior distribution of Θ given D is defined as:

p(Θ|D) ∝ pΘ(y1, · · · , yT |{x1,t, · · · ,xS,t}Tt=0) · p(Θ), (9)

where pΘ(y1, · · · , yT |{x1,t, · · · ,xS,t}Tt=0) is defined in Eq. 8 and p(Θ) is the
prior.

7 We indicate with pθ probability densities and Pω probability mass functions.



Mixture ensembles for cryptocurrency intraday volume forecasting 9

Given p(Θ|D), the predictive density of yτ is derived by integrating over
Θ as:

p(yτ |{x1,<τ , · · · ,xS,<τ},D)

=

∫
Θ

pΘ(yτ |{x1,<τ , · · · ,xS,<τ}) · p(Θ|D)dΘ

=
1

M

M∑
m=1

pΘm
(yτ |{x1,<τ , · · · ,xS,<τ}),

(10)

where Θm is a sample from the posterior p(Θ|D), i.e. Θm = {θm, ωm} ∼
p(Θ|D).
Predictive mean. The typical prediction on the target yτ is the expected
value, i.e. the conditional mean. In our temporal mixture model, it is derived
as:

E[yτ |{x1,<τ , · · · ,xS,<τ},D]

=

∫
y

y · p(y|{x1,<τ , · · · ,xS,<τ},D)dy

=

∫
y

∫
Θ

y · pΘ({x1,<τ , · · · ,xS,<τ}) · p(Θ|D)dydΘ

=
1

M

M∑
m=1

E[yτ |x1,<τ , · · · ,xS,<τ , Θm],

where Θm ∼ p(Θ|D)

(11)

In Eq. 11, we use Monte Carlo methods to obtain unbiased estimates of the
integral on model parameters. E[yτ |x1,<τ , · · · ,xS,<τ , Θm] is the conditional
mean given one realization Θm of the model parameters. In the context of
temporal mixture models, it is derived as:

E[yτ |x1,<τ , · · · ,xS,<τ , Θm]

=

S∑
s=1

Pωm
(zτ = s|x1,<τ , · · · ,xS,<τ ) · E[yτ |xs,<τ , θm]

(12)

Eq. 12 shows that the mixture mean is the weighted sum of means derived
from individual data sources.
Predictive aleatoric and epistemic uncertainty. Apart from the mean,
the predictive uncertainty of the target is of great interest as well, since it
allows to compute confidence intervals on the predictions and facilitates the
decision making based on volume predictions. Meanwhile, by jointly mod-
eling predictive mean and uncertainty, our mixture ensemble provides well-
calibrated prediction, which will be demonstrated in the experiment section.

In a Bayesian setting, there are two main types of uncertainty one can
model.
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– Aleatoric uncertainty captures underlying noise inherent in the observa-
tions. For instance, in financial markets, a widely used aleatoric uncer-
tainty is the volatility of stock return, which reflects the price fluctuation
over time. It can be estimated either by empirical variance or GARCH
family models.

– Epistemic uncertainty is the uncertainty in the model, which captures what
our model does not know due to lack of training data. It can be explained
away with increased training data.

In the following, by deriving the conditional variance of the target in the
Bayesian mixture manner, we demonstrate that the total variance is decom-
posed into aleatoric and epistemic uncertainties, which reflect different aspects
of the variance of the target yτ .

Var(yτ |{x1,<τ , · · · ,xS,<τ},D)

=

∫
y

y2p(y|{x1,<τ , · · · ,xS,<τ},D)dy − E2[yτ |{x1,<τ , · · · ,xS,<τ},D]

=
1

M

M∑
m=1

S∑
s=1

Pωm(zt = s|·)Var(y|zt = s,xs,<τ , Θm)︸ ︷︷ ︸
Aleatoric Uncertainty

+

1

M

M∑
m=1

S∑
s=1

Pωm
(zt = s|·)E2[y|zt = s,xs,τ , Θm)− E2[y|{x1,τ , · · · ,xS,τ}τ1 ,D],︸ ︷︷ ︸

Epistemic Uncertainty

(13)

where ωm is from sample Θm. Eq. 13 bridges the aleatoric and epistemic un-
certainty by the derivation of total variance of yτ in the Bayesian mixture
setting. The decomposition in Eq. 13 also theoretically demonstrates the re-
lation between total variance and the aleatoric and epistemic uncertainty in
Bayesian modeling, namely the total variance is composed of inherent noise
and model uncertainty on the target.

The aleatoric part in Eq. 13 stems from variance induced from multi-source
data. It captures the noise inherent to the target which could depend on xs,<τ .
As a comparison, a classical aleatoric uncertainty (or volatility) estimation
model, the GARCH, is typically used to estimate the volatility solely with the
target time series. It has no mechanism to capture the evolving relevance of
multi-source data to the aleatoric uncertainty of the target.

The epistemic uncertainty on mean in Eq. 13 accounts for uncertainty in
the model parameters i.e. uncertainty which captures our ignorance about
which model generated our collected data. This uncertainty can be reduced
when enough data are available, and is often referred to as model uncertainty.
Model specification. We now specify in detail the mathematical formula-
tion of each component in the temporal mixture model. The inference process
we presented so far does not relies on any specific formulation of the model
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and thus it is flexible to different specifications. Without loss of generality,
we present the following model specification for cryptocurrency data of this
paper’s interest.

To specify the model, we need to define the predictive density function of
individual sources, i.e. pθ(yt|zt = s,xs,<t) and the probability function of la-
tent variable, i.e. Pω(zt = s |x1,<t, · · · ,xS,<t). We make a general assumption
for both these functions that data from different sources are taken within the
same time window w.r.t. the target time step. We denote by h the window
length, i.e. the number of past time steps which enter in the conditional prob-
abilities. We assume that this value is the same for each source. Eq. 8 is thus
simplified as:

∏
t

S∑
zt=1

pθ(yt|zt = s,xs,(−h,t))·

Pω(zt = s|x1,(−h,t), · · · ,xS,(−h,t)),

(14)

where xs,(−h,t) represents the data from source s within the time window from

t− h to t− 1 and xs,(−h,t) ∈ Rds×h.

First, for pθ(yt|zt = s,xs,(−h,t)), we choose the Gaussian distribution. Since

xs,(−h,t) ∈ Rds×h is a matrix, we choose bi-linear regression to parameterize
the mean and variance of the Gaussian distribution as follows:

yt|zt = s,xs,(−h,t), θ ∼ N
(
µs(xs,(−h,t)

)
, σ2
s(xs,(−h,t))) (15)

µs(xs,(−h,t)) = L>µ,s · xs,(−h,t) ·Rµ,s + bµ,s (16)

σ2
s(xs,(−h,t)) = (L>σ,s · xs,(−h,t) ·Rσ,s + bσ,s)

2, (17)

where Lµ,s, Lσ,s ∈ Rds and Rµ,s, Rσ,s ∈ Rh. bµ,s, while bσ,s ∈ R are bias
terms. Note that the above parameters are data source specific and then the
parameter set θ can be denoted by θ = {Lµ,s, Lσ,s, Rµ,s, Rσ,s, bµ,s, bσ,s}Ss=1.

As a results, mean and variance on individual data source are defined as:
E[yτ |xs,<τ , Θm] = µs(xs,(−h,t)) and Var(yτ |zt = s,xs,<τ , Θm) = σ2

s(xs,(−h,t)).
Consequently, the mean and uncertainties in the inference phase can be ex-
plicitly calculated.

Second, we choose for Pω(zt = s|x1,(−h,t)) a multinomial logistic function:

Pω(zt = s|x1,(−h,t), · · · ,xS,(−h,t)) =
exp( f(xs,(−h,t)) )

exp(
∑S
k=1 f(xk,(−h,t)) )

, (18)

f(x) = L> · x ·R+ b (19)

where L,R ∈ Rds and b ∈ R is a bias term
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3.5 Learning

In this part, we present how to generate samples of p(Θ|D) in an empirical
ensemble manner.

Our approach is based on the ensemble of Maximum a-posteriori (MAP)
optimization, which maximizes the (log) posterior of model parameters, i.e.
log p(Θ|D). Since log p(Θ|D) ∝ log pΘ(y1, · · · , yT |{x1,t, · · · ,xS,t}Tt=0)+log p(Θ),
the MAP of log p(Θ|D) can be expressed as the following minimization:

min
Θ={θ,ω}

L(Θ;D) =

min
Θ={θ,ω}

−
T∑
t=1

log

S∑
zt=1

pθ(yt|zt = s,xs,(−h,t)) · Pω(zt = s|{xs,(−h,t)}S1 )− log p(Θ),

(20)

where the prior p(Θ) is viewed as a regularizer in optimization and typically
L2 regularization is used.

Nowadays, stochastic gradient descent (SGD) is popular and widely used
for this type of large scale optimization. Starting from a random initialized
model parameters, in each iteration SGD samples a batch of training instances
to update the model parameters as follows:

Θi = Θi−1 − η∇L(Θi−1;Di), (21)

where η is the learning rate, a tunable hyperparameter to control the mag-
nitude of gradient update. ∇L(Θi−1;Di) is the gradient of the loss function
w.r.t. model parameters given data batch Di at iteration i. A consecutive set of
batches passing all training instances once is defined as one epoch of training.

Meanwhile, as the availability of highly optimized matrix optimizations
common to state-of-the-art machine learning libraries [41, 42], a variety of
SGD based optimization methods are developed to improve the stability and
convergence rate, for example, widely used Adam, Adagrad and so on [43,44].
For more details about the SGD sampling procedure, see Appendix C.

4 Experiments

4.1 Data and metrics

In this section, we present the set of different metrics used in our experiments.
In all the experiments, data instances are time ordered and we use the first
70% of points for training, the next 10% for validation, and the last 20% of
points for out-of-sample testing. All the metrics are evaluated out of sample.

We use two groups of metrics to study the performance.
Error metric: three metrics are used to evaluate the errors between

ground-truth volume yi and predictive mean of volume ŷi as follows.
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The root mean square error RMSE =
√

1
M

∑M
i=1(yi − ŷi)2 and mean ab-

solute error MAE = 1
M

∑M
i=1 |yi − ŷi| on the out-of-sample testing period

(M = 6, 800). The Pearson correlation coefficient between the predicted vol-
ume and true volume is:

CORR =

∑M
i=1(yi − E[yi])(ŷi − E[ŷi])√∑M

i=1(yt − E[yi])2
√∑M

i=1(ŷi − E[ŷi])2
(22)

and clearly larger values indicate better models.
Calibration metric: this type of metric evaluates how well the distribu-

tion characterized by predictive mean ŷi and variance σ̂2
i fits the ground-truth

target values.
For GARCH-family the predictive Normalized Negative Log-Likelihood

score is calculated as [45]

NNLL = − 1

M

M∑
i=1

lnN (yi|ŷi, σ̂i), (23)

where N (.|ŷi, σ̂2
i ) denotes the Gaussian density function parameterized by pre-

dictive mean ŷi and variance σ̂2
i . The normalization is done with the total

number of out-of-sample points (M).
For the temporal mixture model, the NNLL score is calculated by using the

likelihood function Eq. 10, normalized by the total number of out-of-sample
points. Lower values indicate better performance.

The 2σ̂ coverage (IC) counts the fraction of true values yi that fall within
2σ̂i range, where σ̂i is the predictive standard deviation:

IC =
1

M

M∑
i=1

1[ŷi−2σ̂i≤yi≤ŷi+2σ̂i]. (24)

Under the Gaussian distribution, the 2σ̂i interval around the mean value cor-
responds to IC∗ = 0.9545, which means the percent of ground-truth values
falling within 2σ̂i is ideally to be 95.45% for well-calibrated models [46].

The closer the empirical value to IC∗, the better calibrated the model is.
Therefore, we define a simpler measure, the 2σ̂ coverage error (ICE), which
measures the absolute difference to the ground value IC∗ as:

ICE = |IC− 0.9545|. (25)

Finally, for a prediction interval [y−i , y
+
i ], we calculate the mean prediction

interval width (IW) as:

IW =
1

C

M∑
i=1

(y+i − y
−
i ) =

1

C

M∑
i=1

4σ̂i, (26)

where y+i = ŷi + 2σ̂i and y−i = ŷi − 2σ̂i and C is the number of true target

values falling within the prediction interval C =
∑M
i=1 1[ŷi−2σ̂i≤yi≤ŷi+2σ̂i]. The
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IW measure should be minimized and it tells that the high-quality prediction
intervals should be as narrow as possible, while capturing a specified portion
of data, without assumptions on the distribution [46].

4.2 Results

In the first set of experiments we concentrate on 5-min ahead predictions
for both markets. For all the processes in the AR-GARCH family the auto-
regressive order was fixed to p = 10, which is the maximum lag for which the
partial autocorrelation function is still significant.

Table 1 and Table 2 show the out of sample prediction metrics for the
two markets. Notice that the 5 min mean volume on test set is 49.67 for
Bitfinex and 21.47 for Bitstamp. By comparing these numbers with the MAE,
we observe that the level of noise is quite high, since the two values are
comparable. This can be also seen by computing the average relative fore-
casting error. For AR-GARCH model this value is E[(yt − ŷt)/yt] = 3.356,
E[(yt − ŷt)/yt] = 3.9857 for Bitfinex and Bitstamp, respectively. However the
Pearson correlation between AR-GARCH predictions and true volume for the
two markets are ρ1(yt, ŷt) = 0.5268, ρ2(yt, ŷt) = 0.4799, which are pretty
high values. Furthermore, we observe that external features are not helping
the ARX-GARCH family to get better scores w.r.t to a simpler AR-GARCH
family.

When comparing different models, we observe that the temporal mixture
ensemble model has significantly lower MAE, even with respect to the ma-
chine learning benchmark (gradient boosting), while the RMSE is comparable
or slightly lower. We provide an explanation for this result later when we con-
dition the forecast on the volume quartile. Finally, we note that the mixture
ensemble has drastically better volume uncertainty predictions (as measured
by NNLL, IC, and IW) than the other models. Remind that gradient boosting
does not provide estimates on the uncertainty of the forecast.

Table 1: 5-min ahead prediction metrics for Bitfinex markets. Out of sample
performance of 5-min ahead predictions for the period of June 2018 - November
2018 (70% train, 10% validation and 20% test). The arrow symbols in the first
line indicate the direction of the metrics for better models.

MODEL RMSE ↓ MAE ↓ NNLL ↓ CORR ↑ ICE ↓ IW ↓
AR-GARCH 63.952 38.229 5.4866 0.5268 0.012 284.598

AR-GJR-GARCH 63.78 38.838 5.4799 0.5306 0.012 282.843
ARX-GARCH 63.677 38.086 5.482 0.531 0.011 282.934

ARX-GJR-GARCH 63.597 37.208 5.4788 0.4225 0.010 285.323
Gradient boosting 62.529 37.768 NA 0.562 NA NA
Mixture ensemble 63.68 33.72 4.82 0.55 0.002 184.54
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Table 2: 5-min ahead prediction metrics for Bitstamp markets. Out of sample
performance of 5-min ahead predictions for the period of June 2018 - November
2018 (70% train, 10% validation and 20% test). The arrow symbols in the first
line indicate the direction of the metrics for better models.

MODEL RMSE ↓ MAE ↓ NNLL ↓ CORR ↑ ICE ↓ IW ↓
AR-GARCH 38.118 17.089 4.9026 0.4799 0.022 158.496

AR-GJR-GARCH 38.051 17.328 4.8952 0.4819 0.022 162.632
ARX-GARCH 39.13 20.356 4.931 0.4534 0.023 157.959

ARX-GJR-GARCH 39.131 20.324 4.9251 0.453 0.023 158.16
Gradient boosting 37.764 15.966 NA 0.5177 NA NA
Mixture ensemble 38.90 15.54 3.89 0.51 0.005 91.69

We now focus on the forecast of the temporal mixture ensemble In Fig 2
and Fig 3 we show the volume and uncertainty prediction on a 5 min level
for the two markets in a random interval of two hundred 5 min intervals. In
both markets the 95% confidence interval covers quite well the actual values.
We notice in both plots the presence of large spikes, corresponding to 5 min
intervals where, unexpectedly, a large volume is traded and clearly the model
is unable to forecast them. We believe that these volume bursts are responsible
of the large difference between MAE and RMSE and of the fact that all models
have comparable RMSE (but different MAE). Below we provide more evidence
of this.

Fig. 2: Sample time series of 5 min trading volumes in Bitfinex (black line). The
blue line is the 5 min ahead prediction with the temporal mixture ensemble
and the light blue area represent its 95% confidence interval.

The temporal mixture ensemble is able to quantify at each time step the
contribution of each source to the target forecasting. In Fig 4 we show the
dynamical contributions of the S = 4 sources for a random sample of 5-min
ahead predictions for Bitfinex market. We notice that the relative contributions
varies with time and we observe that the external order book source from the
less liquid market does not contribute much to predictions. On the contrary,
in Fig. 5, where the data for Bitstamp are shown, external order book and
external transaction features from the more liquid market (Bitfinex) play a
more dominant role.
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Fig. 3: Sample time series of 5 min trading volumes in Bitstamp (black line).
The blue line is the 5 min ahead prediction with the temporal mixture ensemble
and the light blue area represent its 95% confidence interval.

Fig. 4: Data source contribution for a time series sample of 5 min trading
volume in Bitfinex. The contributions are obtained with the temporal mixture
ensemble.

Fig. 5: Data source contribution for a time series sample of 5 min trading
volume in Bitstamp. The contributions are obtained with the temporal mixture
ensemble.

In order to understand in a more quantitative way the role of large volumes
in the forecasting ability of the different models, we compute the RMSE and
MAE conditional to the quartile of the true value of the volume of the target
market. Table 3 reports the results. First of all, we notice that, for all the
methods, both error measures change by almost an order of magnitude when
moving from the lowest to the largest quartile. This is a strong indication that
the main problems in forecasting derive from large and unexpected volume
bursts. We finally notice that the temporal mixture ensemble outperforms the
other models, both considering RMSE and MAE, when Bitfinex volume is in
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Q1-Q3. For Bitstamp market the results are less clear, but in general machine
learning methods work better than the benchmark econometric models.

Table 3: 5-min ahead prediction metrics for both markets conditional to the
quartile of the target volume in the period of June 2018 - November 2018.

BITFINEX MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4
AR-GARCH 25.4712 32.5289 41.3908 116.2046

ARX-GARCH 29.0931 31.2223 34.6301 114.9813
Gradient Boosting 30.9203 29.4742 28.4582 112.6362
Mixture ensemble 22.82 21.06 25.74 120.93

MAE Q1 MAE Q2 MAE Q3 MAE Q4
AR-GARCH 18.7562 21.1582 27.2724 80.4797

ARX-GARCH 24.9695 23.1059 22.5028 77.9657
Gradient Boosting 28.0851 24.4661 20.2829 74.4320
Mixture ensemble 20.90 15.14 16.94 84.49

BITSTAMP MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4
AR-GARCH 11.5399 14.5152 17.962 73.2483

ARX-GARCH 18.9325 19.0446 18.1409 71.2284
Gradient Boosting 11.4270 11.0809 10.5455 72.6233
Mixture ensemble 11.73 11.34 11.10 74.87

MAE Q1 MAE Q2 MAE Q3 MAE Q4
AR-GARCH 7.6147 8.7595 10.5267 40.2782

ARX-GARCH 17.3215 15.8453 12.4302 35.6983
Gradient Boosting 10.0851 8.7940 7.1503 37.4343
Mixture ensemble 11.15 8.55 5.77 39.13

We have also repeated these experiments for the data with 1 min resolu-
tion. The results are collected in the figures and tables in the Appendix. Since
the volume distribution at small time scale is more leptokurtic than the one at
5 min, large volume bursts are more frequent and tend to deteriorate signifi-
cantly the forecasting performance of all the models. This can be understood
by considering that the average relative error of the AR-GARCH model is 447
and 119 for the two markets, to be compared with the values 3.35 and 3.99
observed at 5 min resolution. Looking at Table 6, where the analysis condi-
tional to quartile is presented, it is again clear that machine learning methods
outperforms the econometric benchmarks (except in the fourth quartile, as
expected). Finally, the temporal mixture ensemble provides confidence inter-
vals which are significantly more accurate than those obtained with the other
models.

5 Conclusion and discussion

In this paper, we analyzed the problem of predicting trading volume and its
uncertainty in cryptocurrency exchange markets. The main innovations pro-
posed in this paper are (i) the use of transaction and order book data from
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different markets and (ii) the use of a class of model able to identify at each
time step the set of data locally more useful in predictions.

By investigating data from BTC/USD exchange markets, we found that
time series models of the AR-GARCH family do provide fair basic predictions
for volume and its uncertainty, but when external data (e.g. from order book
and/or from other markets) are added, the prediction performance does not
improve significantly. Our analysis suggests that this might be due to the fact
that the contribution of this data to the prediction could be not constant over
time, but depending on the ”market state”. The temporal mixture ensem-
ble model is designed precisely to account for such a variability. Indeed we
find that this method outperforms time series models both in point and in
interval predictions of trading volume. Moreover, especially when compared
to other machine learning methods, the temporal mixture approach is signif-
icantly more interpretable, allowing the inference of the dynamical contribu-
tions from different data sources as a core part of the learning procedure. This
has important potential implications for decision making in economics and
finance.

One of the critical outcomes of the forecasting exercise is that the pre-
dictability significantly depends on the size of the volume to be forecast. We
found that our method works better than the benchmarks when volume is not
in the top quartile, while in this extreme case all the methods perform poorly.
This is likely due to the presence of unexpected bursts of volume which are
very challenging to forecast. As a consequence, the prediction is significantly
less accurate when the time interval of the series is too short, since in this case
extreme fluctuations are more frequent.

Finally, although the method has been proposed and tested for cryptocur-
rency volume in two specific exchanges, we argue that it can be successfully
applied (in future work) to other cryptocurrencies and to more traditional
financial assets.
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6 Appendix A: Results on 1-min intervals

In this Appendix we report, for the sake of completeness, the results obtained
with 1 min data. As we have mentioned in the main text, the high burstiness
of the volume data on this time scale lead to a significant deterioration of the
forecasting ability of all the models.

First of all, we note that for AR-GARCH model (and similarly for the
other models) the relative mean absolute error for the two markets are huge
being equal to AV G[(yt − ŷt)/yt] = 447.751, AV G[(yt − ŷt)/yt] = 119.168.
Table 4 and 5 reports the metrics of all the models’ predictions for Bitfinex
and Bitstamp, respectively. We observe that different variants of AR-GARCH
and ARX-GARCH behave similarly w.r.t. RMSE, MAE and NNLL metric.
Furthermore, gradient boosting has the lowest RMSE and MAE errors for
volume predictions. We observe that the temporal mixture ensemble model is
having comparable volume predictions but drastically better volume volatility
predictions (NNLL, ICE, IW).

In Fig. 6 and Fig. 7 we show the 1 min-ahead volume prediction along
with uncertainty for Bitfinex and Bitstamp, respectively. At the same time,
we plot the contributions from different sources (see Fig. 8 and 9), where we
observe the dynamic contribution of different sources. In particular, for 1-min
ahead prediction in Bitfinex (Fig 8) we see the interplay of local transaction
features and external features and the smallest contribution of local order
book features. In Fig. 9 for less liquid Bitstamp, we observe that the external
order book features are playing a dominant dynamic role together with local
transaction features.

Finally, Table 6 shows the RMSE and MAE for the various models condi-
tioning on the quartile of the target variable. Again it is clear that machine
learning models works better for volume in Q1-Q3, while for large volumes in
Q4 the performances of the models become similar.

Table 4: 1-min ahead prediction metrics for Bitfinex markets. Out of sample
performance of 1-min ahead predictions for the period of June 2018 - November
2018 (70% train, 10% validation and 20% test). The arrow symbols in the first
line indicate the direction of the metrics for better models.

MODEL RMSE ↓ MAE ↓ NNLL ↓ CORR ↑ ICE ↓ IW ↓
AR-GARCH 20.113 9.936 4.2542 0.447 0.016 86.523

AR-GJR-GARCH 20.086 9.976 4.2522 0.4471 0.016 86.366
ARX-GARCH 20.132 9.703 4.2445 0.4451 0.015 85.423

ARX-GJR-GARCH 20.103 9.867 4.2494 0.4453 0.016 86.603
Gradient boosting 19.985 8.87 NA 0.483 NA NA
Mixture ensemble 20.00 9.42 2.90 0.46 0.001 61.89
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Table 5: 1-min ahead prediction metrics for Bitstamp markets. Out of sample
performance of 1-min ahead predictions for the period of June 2018 - November
2018 (70% train, 10% validation and 20% test). The arrow symbols in the first
line indicate the direction of the metrics for better models.

MODEL RMSE ↓ MAE ↓ NNLL ↓ CORR ↑ ICE ↓ IW ↓
AR-GARCH 11.196 4.248 3.5866 0.4774 0.023 40.115

AR-GJR-GARCH 11.193 4.243 3.5841 0.4762 0.023 42.34
ARX-GARCH 11.252 4.504 3.5895 0.4701 0.023 39.794

ARX-GJR-GARCH 11.21 4.188 3.5862 0.4739 0.023 41.598
Gradient boosting 11.182 3.73 NA 0.5317 NA NA
Mixture ensemble 11.38 4.058 2.03 0.49 0.004 27.67

Fig. 6: Sample time series of 1 min trading volumes in Bitfinex (black line). The
blue line is the 1 min ahead prediction with the temporal mixture ensemble
model and the light blue area represents its 95% confidence interval.

Fig. 7: Sample time series of 1 min trading volumes in Bitstamp (black line).
The blue line is the 1 min ahead prediction with the temporal mixture ensemble
model and the light blue area represents its 95% confidence interval.

7 Appendix B: Gradient Boosting Machine Learning

For a given training sample {yt,xt}Tt=1, our goal is to find a function F ∗(x)
such that the expected value of loss function Ψ(y, F (x)) is minimized over the
joint distribution of {y,x}

F ∗(x) = arg min
F (x)

Ey,xΨ(y, F (x)). (27)

Under the additive expansion F (x) =
∑M
m=0 βmh(x; am) with parameterized

functions h(x; am), we proceed with the minimization of data estimate of ex-
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Fig. 8: Data source contribution for a time series sample of 1 min trading
volume in Bitfinex. The contributions are obtained with the temporal mixture
ensemble model.

Fig. 9: Data source contribution for a time series sample of 5 min trading
volume in Bitstamp. The contributions are obtained with the temporal mixture
ensemble model.

Table 6: 1-min ahead prediction metrics for both markets conditional to the
quartile of the target volume in the period of June 2018 - November 2018.

BITFINEX MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4
AR-GARCH 7.3131 9.163 10.3165 37.0707

ARX-GARCH 7.0584 9.0724 10.1451 37.2288
Gradient Boosting 5.2867 5.9321 6.0074 38.7101
Mixture ensemble 6.59 7.56 8.086 37.86

MAE Q1 MAE Q2 MAE Q3 MAE Q4
AR-GARCH 5.8234 6.3874 5.9997 21.5342

ARX-GARCH 5.2314 5.9161 5.8702 21.7944
Gradient Boosting 4.6802 4.78 3.8955 22.1228
Mixture ensemble 6.07 6.16 4.84 21.70

BITSTAMP MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4
AR-GARCH 3.3807 3.9941 4.376 21.3262

ARX-GARCH 3.7292 4.3312 4.6574 21.2603
Gradient Boosting 2.0817 2.2466 2.1172 22.0518
Mixture ensemble 2.71 2.89 2.64 22.19

MAE Q1 MAE Q2 MAE Q3 MAE Q4
AR-GARCH 2.4622 2.5202 2.2675 9.7414

ARX-GARCH 2.8769 2.9354 2.6175 9.5851
Gradient Boosting 1.7587 1.7614 1.3628 10.0345
Mixture ensemble 2.46 2.40 1.55 9.90
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pected loss [25]:

{βm,am}M1 = arg min
β′m,a

′
m

T∑
t=1

Ψ(yt,

M∑
m=0

β′mh(xt; a
′
m)). (28)

However, for practical purposes first we make the initial guess
F0(x) = arg minc

∑T
t=1 Ψ(yt, c) and then parameters are jointly fit in a forward

incremental way m = 1, ...,M :

(βm,am) = arg min
β,a

T∑
t=1

Ψ(yt, Fm−1(xt) + βh(xt; a)) (29)

and
Fm(xt) = Fm−1(xt) + βmh(xt; am). (30)

First, the function h(xt; a) is fit by least-squares to the pseudo-residuals ỹt,m

am = arg min
a,ρ

T∑
t=1

[ỹt,m − ρh(xt; a)]2, (31)

which for squared loss Ψ(yt, F (xt)) = 1
2 (yt − F (x))2 at stage m is a residual

ỹt,m = (yt − Fm−1(xt)). For general loss Ψ , we have

ỹt,m = −
[
∂Ψ(yt, F (xt))

∂F (xt)

]
F (x)=Fm−1(x)

. (32)

Now, we just find the coefficient βm for the expansion as

βm = arg min
β

T∑
t=1

ψ(yt, Fm−1 + βh(xt; am)). (33)

Each base learner h(xt; am) partitions the feature space xt ∈ X into L-
disjoint regions {Rl,m}L1 and predicts a separate constant value in each:

h(xt; {Rl,m}L1 ) =

L∑
l=1

ȳl,m1(xt ∈ Rl,m), (34)

where ȳl,m is the mean value of pseudo-residual (eq. 32) in each region Rl,m

ȳl,m =

∑T
t=1 ỹt,m1[xt ∈ Rl,m]∑T
t=1 1[xt ∈ Rl,m]

. (35)

We have used the GBM implementation from Scikit-learn library [47] for all
our experiments 8.

8 Within this library, for hyper-parameters optimization, we take the following
regression tree hyper-parameters into the account: ”n estimators”, ”max features”,
”min samples leaf”, ”max depth” and the following learning hyper-parameters: ”learn-
ing rate” and ”loss”.
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8 Appendix C: SGD-based sampling

In stochastic gradient descent (SGD) based optimization, stochasticity comes
from two places:

– SGD trajectory. The iterates {Θ0, · · · , Θi} forms a exploratory trajectory
of posterior space log p(Θ|D), as Θi is updated by randomly data sam-
ple Di. Recent works [48, 49] studied the connection of trajectory iterates
to an approximate Markov chain Monte Carlo sampler by analyzing the
dynamics of SGD.

– Model initialization. Different initialization of model parameters, i.e. Θ0,
leads to distinct trajectories. It has been shown that ensembles of indepen-
dently initialized and trained models empirically often provide comparable
performance in prediction and uncertainty quantification w.r.t. sampling
and variational inference based methods, even though it does not apply
conventional Bayesian grounding [38,40].

In this paper, we make a hybrid approach, that uses both sources of stochas-
ticity to obtain approximate samples {Θm} ∼ p(Θ|D) as follows:

{Θm} ≈
⋃
j

{Θji , · · · , Θ
j
I} (36)

Eq. 36 indicates that from each independently trained SGD trajectory (indexed
by j), we skip the beginning few epochs as a ”burn-in” step (common in Monte
Carlo methods). We choose the remaining as samples from this trajectory.
Then, we further take the union of samples from independent trajectories as
the samples used by the inference in Sec. 3.4.

In our experiments, we use Adam optimization, a variant of SGD, which has
been widely used in machine learning [44]. We found that 5 to 10 independent
training processes can give rise to decently accurate and calibrated forecasting.
Moreover, by parallel computing on GPU, we perform each training process
in parallel without loss of efficiency.
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