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Abstract
For recurrent neural networks trained on time se-
ries with target and exogenous variables, in ad-
dition to accurate prediction, it is also desired to
provide interpretable insights into the data. In this
paper, we explore the structure of LSTM recur-
rent neural networks to learn variable-wise hidden
states, with the aim to capture different dynamics
in multi-variable time series and distinguish the
contribution of variables to the prediction. With
these variable-wise hidden states, a mixture atten-
tion mechanism is proposed to model the genera-
tive process of the target. Then we develop associ-
ated training methods to jointly learn network pa-
rameters, variable and temporal importance w.r.t
the prediction of the target variable. Extensive ex-
periments on real datasets demonstrate enhanced
prediction performance by capturing the dynam-
ics of different variables. Meanwhile, we eval-
uate the interpretation results both qualitatively
and quantitatively. It exhibits the prospect as an
end-to-end framework for both forecasting and
knowledge extraction over multi-variable data.

1. Introduction
Recently, recurrent neural networks (RNNs), especially long
short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997) and gated recurrent units (GRU) (Cho et al., 2014),
have been proven to be powerful sequence modeling tools
in various tasks e.g. language modelling, machine transla-
tion, health informatics, time series, and speech (Ke et al.,
2018; Lin et al., 2017; Guo et al., 2016; Lipton et al., 2015;
Sutskever et al., 2014; Bahdanau et al., 2014). In this paper,
we focus on RNNs over multi-variable time series consist-
ing of target and exogenous variables. RNNs trained over
such multi-variable data capture nonlinear correlation of
historical values of target and exogenous variables to the
future target values.
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In addition to forecasting, interpretable RNNs are desir-
able for gaining insights into the important part of data for
RNNs achieving good prediction performance (Hu et al.,
2018; Foerster et al., 2017; Lipton, 2016). In this paper, we
focus on two types of importance interpretation: variable
importance and variable-wise temporal importance. First,
in RNNs variables differ in predictive power on the target,
thereby contributing differently to the prediction (Feng et al.,
2018; Riemer et al., 2016). Second, variables also present
different temporal relevance to the target one (Kirchgässner
et al., 2012). For instance, for a variable instantaneously
correlated to the target, its short historical data contributes
more to the prediction. The ability to acquire this knowledge
enables additional applications, e.g. variable selection.

However, current RNNs fall short of the aforementioned
interpretability for multi-variable data due to their opaque
hidden states. Specifically, when fed with the multi-variable
observations of the target and exogenous variables, RNNs
blindly blend the information of all variables into the hidden
states used for prediction. It is intractable to distinguish
the contribution of individual variables into the prediction
through the sequence of hidden states (Zhang et al., 2017).

Meanwhile, individual variables typically present different
dynamics. This information is implicitly neglected by the
hidden states mixing multi-variable data, thereby potentially
hindering the prediction performance.

Existing works aiming to enhance the interpretability of
recurrent neural networks rarely touch the internal structure
of RNNs to overcome the opacity of hidden states on multi-
variable data. They still fall short of aforementioned two
types of interpretation (Montavon et al., 2018; Foerster et al.,
2017; Che et al., 2016). One category of the approaches is to
perform post-analyzing on trained RNNs by perturbation on
training data or gradient based methods (Ancona et al., 2018;
Ribeiro et al., 2018; Lundberg & Lee, 2017; Shrikumar et al.,
2017). Another category is to build attention mechanism
on hidden states of RNNs to characterize the importance of
different time steps (Qin et al., 2017; Choi et al., 2016).

In this paper we aim to achieve a unified framework of accu-
rate forecasting and importance interpretation. In particular,
the contribution is fourfold:

• We explore the structure of LSTM to enable variable-
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wise hidden states capturing individual variable’s dy-
namics. It facilitates the prediction and interpretation.
This family of LSTM is referred to as Interpretable
Multi-Variable LSTM, i.e. IMV-LSTM.

• A novel mixture attention mechanism is designed to
summarize variable-wise hidden states and model the
generative process of the target.

• We develop a training method based on probabilistic
mixture attention to learn network parameter, variable
and temporal importance measures simultaneously.

• Extensive experimental evaluation of IMV-LSTM
against statistical, machine learning and deep learn-
ing based baselines demonstrate the superior predic-
tion performance and interpretability of IMV-LSTM.
The idea of IMV-LSTM easily applies to other RNN
structures, e.g. GRU and stacked recurrent layers.

2. Related Work
Recent research on the interpretable RNNs can be catego-
rized into two groups: attention methods and post-analyzing
on trained models. Attention mechanism has gained tremen-
dous popularity (Xu et al., 2018; Choi et al., 2018; Guo
et al., 2018; Lai et al., 2017; Qin et al., 2017; Cinar et al.,
2017; Choi et al., 2016; Vinyals et al., 2015; Bahdanau et al.,
2014). However, current attention mechanism is mainly ap-
plied to hidden states across time steps. Qin et al. (2017);
Choi et al. (2016) built attention on conventional hidden
states of encoder networks. Since the hidden states encode
information from all input variables, the derived attention
is biased when used to measure the importance of corre-
sponding variables. The contribution coefficients defined on
attention values is biased as well (Choi et al., 2016). More-
over, weighting input data by attentions (Xu et al., 2018;
Qin et al., 2017; Choi et al., 2016) does not consider the di-
rection of correlation with the target, which could impair the
prediction performance. Current attention based methods
seldom provide variable-wise temporal interpretability.

As for post-analyzing interpretation, Murdoch et al. (2018);
Murdoch & Szlam (2017); Arras et al. (2017) extracted
temporal importance scores over words or phrases of in-
dividual sequences by decomposing the memory cells of
trained RNNs. In perturbation-based approaches perturbed
samples might be different from the original data distribu-
tion (Ribeiro et al., 2018). Gradient-based methods analyze
the features that output was most sensitive to (Ancona et al.,
2018; Shrikumar et al., 2017). Above methods mostly fo-
cused on one type of importance and are computationally
inefficient. They rarely enhance the predicting performance.

Wang et al. (2018) focused on the importance of each middle
layer to the output. Chu et al. (2018) proposed interpreting

solutions for piece-wise linear neural networks. Foerster
et al. (2017) introduced input-switched linear affine transfor-
mations into RNNs to analyze the contribution of input steps,
wihch could lead to the loss in prediction performance. Our
paper focuses on exploring the internal structure of LSTM
so as to learn accurate forecasting and importance measures
simultaneously.

Another line of related research is about tensorization and
decomposition of hidden states in RNNs. Do et al. (2017);
Novikov et al. (2015) proposed to represent hidden states
as matrices. He et al. (2017) developed tensorized LSTM
to enhance the capacity of networks without additional pa-
rameters. Kuchaiev & Ginsburg (2017); Neil et al. (2016);
Koutnik et al. (2014) proposed to partition the hidden layer
into separated modules with different updates. These hidden
state tensors and update processes do not maintain variable-
wise correspondence and lack the desirable interpretability.

3. Interpretable Multi-Variable LSTM
In the following we will first explore the internal structure of
LSTM to enable hidden states to encode individual variables,
such that the contribution from individual variables to the
prediction can be distinguished. Then, mixture attention is
designed to summarize these variable-wise hidden states for
predicting. The described method can be easily extended to
multi-step ahead prediction via iterative methods as well as
vector regression (Fox et al., 2018; Cheng et al., 2006).

Assume we have N -1 exogenous time series and a target
series y of length T , where y = [y1, · · · , yT ] and y ∈
RT . Vectors are assumed to be in column form throughout
this paper. By stacking exogenous time series and target
series, we define a multi-variable input series as XT =
{x1, · · · ,xT }, where xt = [x1

t , · · · ,xN−1
t , yt]. Both of

xn
t and yt can be multi-dimensional vector. xt ∈ RN is the

multi-variable input at time step t. It is also free for XT to
merely include exogenous variables, which does not affect
the methods presented below.

Given XT , we aim to learn a non-linear mapping to predict
the next values of the target series, namely ŷT+1 = F(XT ).

Meanwhile, the other desirable byproduct of learning
F(XT ) is the variable and temporal importance measures.
Mathematically, we aim to derive variable importance vector
I ∈ RN

≥0,
∑N

n=1 In = 1 and variable-wise temporal impor-
tance vector Tn ∈ RT−1

≥0 (w.r.t. variable n),
∑T−1

k=1 Tn
k = 1.

Elements of these vectors are normalized (i.e. sum to one)
and reflect the relative importance of the corresponding
variable or time instant w.r.t. the prediction.
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Figure 1: A toy example of a IMV-LSTM with a two-variable input sequence and the hidden matrix of 4-dimensions per
variable. Circles represent one dimensional elements. Purple and blue colors correspond to two variables. Blocks containing
rectangles with circles inside represent input data and hidden matrix. Panel (a) exhibits the derivation of hidden update j̃t.
Grey areas represent transition weights. Panel (b) demonstrates the mixture attention process. (best viewed in color)

3.1. Network Architecture

The idea of IMV-LSTM is to make use of hidden state
matrix and to develop associated update scheme, such that
each element (e.g. row) of the hidden matrix encapsulates
information exclusively from a certain variable of the input.

To distinguish from the hidden state and gate vectors in
a standard LSTM, hidden state and gate matrices in IMV-
LSTM are denoted with tildes. Specifically, we define the
hidden state matrix at time step t as h̃t = [h1

t , · · · , hN
t ]>,

where h̃t ∈ RN×d, hn
t ∈ Rd. The overall size of the layer

is derived as D = N ·d. The element hn
t of h̃t is the hidden

state vector specific to n-th input variable.

Then, we define the input-to-hidden transition as U j =
[U1

j , · · · , UN
j ]>, where U j ∈ RN×d×d0 , Un

j ∈ Rd×d0

and d0 is the dimension of individual variables at each time
step. The hidden-to-hidden transition is defined as: Wj =
[W1

j · · ·WN
j ], where Wj ∈ RN×d×d and Wn

j ∈ Rd×d.

As standard LSTM neural networks (Hochreiter & Schmid-
huber, 1997), IMV-LSTM has the input it, forget ft, output
gates ot and the memory cells ct in the update process.
Given the newly incoming input xt at time t and the hidden
state matrix h̃t−1, the hidden state update is defined as:

j̃t = tanh
(
Wj ~ h̃t−1 + U j ~ xt + bj

)
, (1)

where j̃t = [ j1t , · · · , jNt ]> has the same shape as hidden
state matrix RN×d. Each element jnt ∈ Rd corresponds
to the update of the hidden state w.r.t. input variable n.
Term Wj ~ h̃t−1 and U j ~ xt respectively capture the
update from the hidden states at the previous step and the
new input. The tensor-dot operation ~ is defined as the
product of two tensors along theN axis, e.g., Wj~h̃t−1 =
[W1

jh
1
t−1 , · · · , WN

j hN
t−1]> where Wn

j h
n
t−1 ∈ Rd.

Depending on different update schemes of gates and
memory cells, we proposed two realizations of IMV-LSTM,

i.e. IMV-Full in Equation set 1 and IMV-Tensor in
Equation set 2. In these two sets of equations, vec(·)
refers to the vectorization operation, which concatenates
columns of a matrix into a vector. The concatenation
operation is denoted by ⊕ and element-wise multi-
plication is denoted by �. Operator matricization(·)
reshapes a vector of RD into a matrix of RN×d. itft

ot

 = σ
(
W [xt ⊕ vec( h̃t−1)] + b

)
(2)

ct = ft � ct−1 + it � vec( j̃t) (3)

h̃t = matricization(ot � tanh(ct)) (4)

Equation set 1: IMV-Full ĩtf̃t
õt

 = σ
(
W ~ h̃t−1 + U ~ xt + b

)
(5)

c̃t = f̃t � c̃t−1 + ĩt � j̃t (6)

h̃t = õt � tanh(c̃t) (7)

Equation set 2: IMV-Tensor

IMV-Full: With vectorization in Eq. (2) and (3), IMV-Full
updates gates and memories using full h̃t−1 and j̃t regard-
less of the variable-wise data in them. By simple replace-
ment of the hidden update in standard LSTM by j̃t, IMV-
Full behaves identically to standard LSTM while enjoying
the interpretability shown below.

IMV-Tensor: By applying tensor-dot operations in Eq. (5),
gates and memory cells are matrices as well, elements of
which have the correspondence to input variables as hidden
state matrix h̃t does. W and U have the same shapes as
Wj and Uj in Eq. (1).

In IMV-Full and IMV-Tensor, gates only scale j̃t and c̃t−1



Exploring Interpretable LSTM Neural Networks over Multi-Variable Data

and thus retain the variable-wise data organization in h̃t.
Meanwhile, based on tensorized hidden state Eq. (1) and
gate update Eq. (5), IMV-Tensor can also be considered
as a set of parallel LSTMs, each of which processes one
variable series and then merges via the mixture. The derived
hidden states specific to each variable are aggregated on both
temporal and variable level through the mixture attention.

Next, we provide the analysis about the complexity of IMV-
LSTM through Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Given time series of N variables, assume a
standard LSTM and IMV-LSTM layer both have size D, i.e.
D neurons in the layer. Then, compared to the number
of parameters of the standard LSTM, IMV-Full and IMV-
Tensor respectively reduce the network complexity by (N −
1)D+(1−1/N)D ·D and 4(N−1)D+4(1−1/N)D ·D
number of parameters.

Proof. In a standard LSTM of layer size D, trainable pa-
rameters lie in the hidden and gate update functions. In total,
these update functions have 4D·D+4N ·D+4D parameters,
where 4D ·D + 4N ·D comes from the transition and 4D
corresponds to the bias terms. For IMV-Full, assume each
input variable corresponds to one-dimensional time series.
Based on Eq. 1, the hidden update has 2D+D2/N trainable
parameters. Equation set 1 gives rise to the number of pa-
rameters equal to that of the standard LSTM. Therefore, the
reduce number of parameters is (N−1)D+(1−1/N)D ·D.
As for IMV-Tensor, more parameter reduction stems from
that the gate update functions in Equation set 2 make use of
the tensor-dot operation as Eq. 1.

Lemma 3.2. For time series of N variables and the recur-
rent layer of size D, IMV-Full and IMV-Tensor respectively
have the computation complexity at each update step as:
O(D2 +N ·D) and O(D2/N +D).

Proof. Assume that D neurons of the recurrent layer in
IMV-Full and IMV-Tensor are evenly assigned to N input
variables, namely each input variable has d = D/N corre-
sponding neurons. For IMV-Full, based on Eq. 1, the hidden
update has computation complexity N · d2 +N · d, while
the gate update process has the complexity D2 + N · D.
Overall, the computation complexity is O(D2 + N · D),
which is identical to the complexity of a standard LSTM. As
for IMV-Tensor, since the gate update functions in Equation
set 2 make use of the tensor-dot operation as Eq. 1, gate
update functions have the same computation complexity as
Eq. 1. The overall complexity is O(D2/N +D), which is
1/N of the complexity of a standard LSTM.

Basically, Lemma 3.1 and Lemma 3.2 indicate that a high
number of input variables leads to a large portion of param-
eter and computation reduction in IMV-LSTM family.

3.2. Mixture Attention

After feeding a sequence of {x1, · · · ,xT } into IMV-Full or
IMV-Tensor, we obtain a sequence of hidden state matrices
{h̃1, · · · , h̃T }, where the sequence of hidden states specific
to variable n is extracted as {hn

1 , · · · ,hn
T }.

The idea of mixture attention mechanism as follows. Tempo-
ral attention is first applied to the sequence of hidden states
corresponding to each variable, so as to obtain the summa-
rized history of each variable. Then by using the history
enriched hidden state of each variable, variable attention is
derived to merge variable-wise states. These two steps are
assembled into a probabilistic mixture model (Zong et al.,
2018; Graves, 2013; Bishop, 1994), which facilitates the
subsequent learning, predicting, and interpreting.

In particular, the mixture attention is formulated as:

p(yT+1 |XT )

=

N∑
n=1

p(yT+1|zT+1 = n,XT ) · Pr(zT+1 = n|XT )

=

N∑
n=1

p(yT+1 | zT+1 = n,hn
1 , · · · ,hn

T )

· Pr(zT+1 = n | h̃1, · · · , h̃T )

=

N∑
n=1

p(yT+1 | zT+1 = n, hn
T ⊕ gn︸ ︷︷ ︸

variable-wise
temporal attention

) (8)

· Pr(zT+1 = n |h1
T ⊕ g1, · · · ,hN

T ⊕ gN )︸ ︷︷ ︸
Variable attention

In Eq. (8), we introduce a latent random variable zT+1

into the the density function of yT+1 to govern the gen-
eration process. zT+1 is a discrete variable over the set
of values {1, · · · , N} corresponding to N input variables.
Mathematically, p(yT+1 | zT+1 = n,hn

T ⊕ gn) character-
izes the density of yT+1 conditioned on historical data
of variable n, while the prior of zT+1, i.e. Pr(zT+1 =
n |h1

T ⊕ g1, · · · ,hN
T ⊕ gN ) controls to what extent yT+1

is driven by variable n.

Context vector gn is computed as the temporal atten-
tion weighted sum of hidden states of variable n, i.e.,
gn =

∑
t α

n
t h

n
t . The attention weight αn

t is evaluated
as αn

t =
exp ( fn(hn

t ) )∑
k exp ( fn(hn

k ) )
, where fn(·) can be a flexible func-

tion specific to variable n, e.g. neural networks.

For p(yT+1 | zT+1 = n,hn
T ⊕ gn), without loss of gener-

ality, we use a Gaussian output distribution parameterized
by [µn, σn] = ϕn(hn

T ⊕ gn), where ϕn(·) can be a feed-
forward neural network. It is free to use other distributions.

Pr(zT+1 = n |h1
T ⊕ g1, · · · ,hN

T ⊕ gN ) is derived by a
softmax function over {f(hn

T ⊕ gn)}N , where f(·) can be a
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feedforward neural network shared by all variables.

3.3. Learning to Interpret and Predict

In the learning phase, the set of parameters in the neural
network and mixture attention is denoted by Θ. Given a set
of M training sequences {XT }M and {yT+1}M , we aim
to learn both Θ and importance vectors I and {Tn}N for
prediction and insights into the data.

Next, we first illustrate the burden of directly interpreting
attention values and then present the training method com-
bining parameter and importance vector learning, without
the need of post analyzing.

Importance vectors I and {Tn}N reflect the global rela-
tions in variables, while the attention values derived above
are specific to data instances. Moreover, it is nontrivial to
decipher variable and temporal importance from attentions.

For instance, during the training on PLANT dataset used
in the experiment section, we collect variable and variable-
wise temporal attention values of training instances. In Fig 2,
left panels plots the histograms of variable attention of three
variables in PLANT at two different epochs. It is difficult
to fully discriminate variable importance from these his-
tograms. Likewise, in the right panel, histograms of tempo-
ral attentions at certain time lags of variable “P-temperature”
at two different epochs does not ease the importance inter-
pretation. Time lag represents the look-back time step w.r..t
the current one. Similar phenomena are observed in other
variables and datasets during the experiments.

In the following, we develop the training procedure based
on the Expectation–Maximization (EM) framework for the
probabilistic model with latent variables, i.e. Eq. (8) in this
paper. Index m in the following corresponds to the training
data instance. It is omitted in hn

T and gn for simplicity.

The loss function to minimize is derived as:

L(Θ, I) =

−
M∑

m=1

Eqnm
[ log p(yT+1,m | zT+1,m = n,hn

T ⊕ gn)]

− Eqnm
[ log Pr(zT+1,m = n |h1

T ⊕ g1, · · · ,hN
T ⊕ gN )]

− Eqnm
[ log Pr(zT+1,m = n | I)]

(9)

The desirable property of this loss function is as:

Lemma 3.3. The negative log-likelihood defined by Eq. (8)
is upper-bounded by the loss function Eq. (9) in the EM
process:

− log
∏
m
p(yT+1,m |XT,m ; Θ) ≤ L(Θ, I)

The proof is provided in the supplementary material.
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Figure 2: Left: Histograms of variable attention at different
epochs. Right: Histograms of temporal attention of variable “P-
temperature”. It is nontrivial to interpret variable and temporal
importance from attention values on training instances.

Therefore, minimizing Eq. (9) enables to simultaneously
learn the network parameters and importance vectors with-
out the need of post processing on trained networks.

In particular, in Eq. (9) the first two terms are derived
from the standard EM procedure. For the last term
Eqnm

[ log Pr(zT+1,m = n | I), intuitively it serves as a reg-
ularization on the posterior of latent variable zT+1,m and
encourages individual instances to follow the global pattern
I, which parameterizes a discrete distribution on zT+1,m.
And qnm represents the posterior of zT+1,m by Eq. (10):

qnm := Pr(zT+1,m = n|XT,m, yT+1,m ; Θ)

∝ p(yT+1,m|zT+1,m = n,XT,m) · Pr(zT+1,m = n|XT,m)

≈ p(yT+1,m | zT+1,m = n,hn
T ⊕ gn)

· Pr(zT+1,m = n |h1
T ⊕ g1, · · · ,hN

T ⊕ gN )

(10)

During the training phase, network parameters Θ and im-
portance vectors are alternatively learned. In a certain round
of the loss function minimization, we first fix the current
value of Θ and evaluate qnm for the batch of data. Then,
since the first two terms in the loss functions solely depend
on network parameters Θ, they are minimized via gradient
descent to update Θ. For the last term, fortunately we can
derive a simple closed-form solution of I as:

I = 1
M

∑
m qm, qm = [q1m, · · · , qnm]> (11)

, which takes into account both variable attention and pre-
dictive likelihood in the importance vector.

As for temporal importance, it can also be derived through
EM, but it requires a hierarchical mixture. For the sake
of computing efficiency, the variable-wise temporal impor-
tance vector is derived from attention values as follows:

Tn = 1
M

∑
m αn

m, αm = [αn
1,m, · · · , αn

T,m]> (12)

This process iterates until convergence. After the training,
we obtain the neural networks ready for predicting as well
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as the variable and temporal importance vectors. Then, in
the predicting phase, the prediction of yT+1 is obtained by
the weighted sum of means as:

ŷT+1 =
∑

n µn·Pr(zT+1 = n |h1
T⊕g1, · · · ,hN

T ⊕gN ) . (13)

4. Experiments
4.1. Datasets

PM2.5: It contains hourly PM2.5 data and the associated
meteorological data in Beijing of China. PM2.5 measure-
ment is the target series. The exogenous time series include
dew point, temperature, pressure, combined wind direction,
accumulated wind speed, hours of snow, and hours of rain.
Totally we have 41, 700 multi-variable sequences.

PLANT: This records the time series of energy production
of a photo-voltaic power plant in Italy (Ceci et al., 2017).
Exogenous data consists of 9 weather conditions variables
(such as temperature, cloud coverage, etc.). The power
production is the target. It provides 20842 sequences split
into training (70%), validation (10%) and testing sets (20%).

SML is a public dataset used for indoor temperature fore-
casting. Same as (Qin et al., 2017), the room temperature
is taken as the target series and another 16 time series are
exogenous series. The data were sampled every minute. The
first 3200, the following 400 and the last 537 data points are
respectively used for training, validation, and test.

Due to the page limitation, experimental results on addi-
tional datasets are in the supplementary material.

4.2. Baselines and Evaluation Setup

The first category of statistics baselines includes:

STRX is the structural time series model with exogenous
variables (Scott & Varian, 2014; Radinsky et al., 2012). It is
consisted of unobserved components via state space models.

ARIMAX is the auto-regressive integrated moving average
with regression terms on exogenous variables (Hyndman
& Athanasopoulos, 2014). It is a special case of vector
auto-regression in this scenario.

The second category of machine learning baselines includes:

RF refers to random forests, an ensemble learning method
consisting of several decision trees (Liaw et al., 2002) and
was used in time series prediction (Patel et al., 2015).

XGT refers to the extreme gradient boosting (Chen &
Guestrin, 2016). It is the application of boosting methods to
regression trees (Friedman, 2001).

ENET represents Elastic-Net, which is a regularized regres-
sion method combining both L1 and L2 penalties of the
lasso and ridge methods (Zou & Hastie, 2005) and used in
time series analysis (Liu et al., 2010; Bai & Ng, 2008).

The third category of deep learning baselines includes:

RETAIN uses RNNs to respectively learn weights on input
data for predicting (Choi et al., 2016). It defines contribution
coefficients on attentions to represent feature importance.

DUAL is an encoder-decoder architecture using an encoder
to learn attentions and feeding pre-weighted input data into
a decoder for forecasting (Qin et al., 2017). It uses temporal-
wise variable attentions to reflect variable importance.

In ARIMAX, the orders of auto-regression and moving-
average terms are set as the window size of the training data.
For RF and XGT, hyper-parameter tree depth and the num-
ber of iterations are chosen from range [3, 10] and [2, 200]
via grid search. For XGT, L2 regularization is added by
searching within {0.0001, 0.001, 0.01, 0.1, 1, 10}. As for
ENET, the coefficients for L2 and L1 penalties are selected
from {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2}. For machine learning
baselines, multi-variable input sequences are flattened into
feature vectors.

We implemented IMV-LSTM and deep learning baselines
with Tensorflow. We used Adam with the mini-batch size
64 (Kingma & Ba, 2014). For the size of recurrent and
dense layers in the baselines, we conduct grid search over
{16, 32, 64, 128, 256, 512}. The size of IMV-LSTM layers
is set by the number of neurons per variable selected from
{10, 15, 20, 25}. Dropout is selected in {0, 0.2, 0.5}. Learn-
ing rate is searched in {0.0005, 0.001, 0.005, 0.01, 0.05}.
L2 regularization is added with the coefficient chosen from
{0.0001, 0.001, 0.01, 0.1, 1.0}. We train each approach 5
times and report average performance. The window size (i.e.
T ) for PM2.5 and SML is set to 10 according to (Qin et al.,
2017), while for PLANT it is 20 to test long dependency.

We consider two metrics to measure the prediction perfor-
mance. RMSE is defined as RMSE =

√∑
k(yk − ŷk)2/K.

MAE is defined as MAE =
∑

k |yk − ŷk|/K.

4.3. Prediction Performance

We report the prediction errors in Table 1, each cell of which
presents the average RMSE and MAE with standard errors.
In particular, IMV-LSTM family outperforms baselines by
around 80% at most. Deep learning baselines mostly out-
perform other baselines. Boosting method XGT presents
comparable performance with deep learning baselines in
PLANT and SML datasets.

Insights. For multi-variable data carrying different patterns,
properly modeling individual variables and their interaction
is important for the prediction performance. IMV-Full keeps
the variable interaction in the gate updating. IMV-Tensor
maintains variable-wise hidden states independently and
only captures their interaction via the mixture attention. Ex-
perimentally, IMV-Full and IMV-Tensor present comparable
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Table 1: RMSE and MAE with std. errors

Dataset PM2.5 PLANT SML
STRX 52.51± 0.82, 47.35± 0.92 231.43± 0.19, 193.23± 0.43 0.039± 0.001, 0.033± 0.001

ARIMAX 42.51± 1.13, 40.23± 0.83 225.54± 0.23, 193.42± 0.41 0.060± 0.002, 0.053± 0.002
RF 38.84± 1.12, 22.27± 0.63 164.23± 0.65, 130.90± 0.15 0.045± 0.001, 0.032± 0.001

XGT 25.28± 1.01, 15.93± 0.72 164.10± 0.54, 131.47± 0.21 0.017± 0.001, 0.013± 0.001
ENET 26.31± 1.33, 15.91± 0.51 168.22± 0.49, 137.04± 0.38 0.018± 0.001, 0.015± 0.001
DUAL 25.31± 0.91, 16.21± 0.42 163.29± 0.54, 130.87± 0.12 0.019± 0.001, 0.015± 0.001

RETAIN 31.12± 0.97, 20.11± 0.76 250.69± 0.36, 190.11± 0.15 0.048± 0.001, 0.037± 0.001
IMV-Full 24.47± 0.34, 15.23± 0.61 157.32± 0.21, 128.42± 0.15 0.015± 0.002, 0.012± 0.001

IMV-Tensor 24.29± 0.45, 14.87± 0.44 156.32± 0.31, 127.42± 0.21 0.009± 0.0009, 0.006± 0.0005
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Figure 3: Variable importance over epochs during the training. Top and bottom panels in each sub-figure respectively correspond to
IMV-Full and IMV-Tensor. In Sec. 4.4., we provide evidence from domain knowledge and show the agreement with the discoveries by
IMV-Full and IMV-Tensor.

performance, though mixture on independent variable-wise
hidden states in IMV-Tensor leads to the best performance.
Note that IMV-Full and IMV-Tensor are of single network
structure. Instead of composite network architectures in
baselines, mixture of well-maintained variable-wise hidden
states in IMV-LSTM also improves the prediction perfor-
mance and empowers the interpretability shown below.

4.4. Interpretation

In this part, we qualitatively analyze the meaningfulness
of variable and temporal importance. Fig. 3 and Fig. 4
respectively show the variable and temporal importance
values during the training under the best hyper-parameters.
The importance values learned by IMV-Full and IMV-Tensor
could be slightly different, because in IMV-Tensor the gate
and memory update scheme evolve independently, thereby
leading to different hidden states to IMV-Full. IMV-LSTM
is easier to understand, compared to baseline RETAIN and
DUAL, since they do not show in global level importance
interpretation like in Fig. 3 and 4.

Variable importance. In Fig. 3, top and bottom panels
in each sub-fig show the variable importance values w.r.t.
training epochs from IMV-Full and IMV-Tensor. Overall,
variable importance values converge during the training

and the ranking of variable importance is identified at the
end of the training. Variables with high importance values
contribute more to the prediction of IMV-LSTM.

In Fig. 3(a), for PM2.5 dataset, variables “Wind speed”,
“Pressure”, “Snow”, “Rain” are high ranked by IMV-LSTM.
According to a recent work studying air pollution (Liang
et al., 2015), “Dew Point” and “Pressure” are both related
to PM2.5 and they are also inter-correlated. One “Pressure”
variable is enough to learn accurate forecasting and thus has
the high importance value. Strong wind can bring dry and
fresh air. “Snow” and “Rain” amount are related to the air
quality as well. Variables important for IMV-LSTM are in
line with the domain knowledge in (Liang et al., 2015).

Fig. 3(b) shows that in PLANT dataset in addition to “Irra-
diance” and “Cloud cover”, “Wind speed”, “Humidity” as
well as “Temperature” are also high ranked and relatively
used more in IMV-LSTM to provide accurate forecasting.
As is discussed in (Mekhilef et al., 2012; Ghazi & Ip, 2014),
humidity causes dust deposition and consequentially degra-
dation in solar cell efficiency. Increased wind can move heat
from the cell surface, which leads to better efficiency.

Fig. 3(c) demonstrates that variables “Humid. room”, “CO2
room”, and “Lighting room” are relatively more important
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Table 2: RMSE and MAE with std. errors under top 50% important variables

Dataset PM2.5 PLANT SML
DUAL 25.09± 0.04, 15.59± 0.08 171.30± 0.17, 154.15± 0.20 0.026± 0.002, 0.018± 0.002

RETAIN 49.25± 0.11, 34.03± 0.24 226.38± 0.72, 167.90± 0.81 0.060± 0.001, 0.044± 0.004
IMV-Full-P 25.14± 0.54, 16.01± 0.52 165.04± 0.08, 129.09± 0.09 0.016± 0.001, 0.013± 0.0009

IMV-Tensor-P 24.84± 0.43, 15.57± 0.61 161.98± 0.11, 131.17± 0.12 0.013± 0.0008, 0.009± 0.0005
IMV-Full 24.32± 0.32, 15.47± 0.02 162.14± 0.10, 128.83± 0.12 0.015± 0.001, 0.011± 0.002

IMV-Tensor 24.12± 0.03, 15.10± 0.01 157.64± 0.14, 128.16± 0.13 0.007± 0.0005, 0.006± 0.0003

for IMV-LSTM (“Humid.” represents humidity). As is
suggested in (Nguyen et al., 2014; Höppe, 1993), humidity
is correlated to the indoor temperature.

Temporal importance. Fig. 4 demonstrate the temporal
importance values of each variable at the ending of the
training. The lighter the color, the more the corresponding
data contributes to the prediction.

Specifically, in Fig. 4(a), short history of variables “Snow”
and “Wind speed” contributes more to the prediction. PM2.5
itself has relatively long-term auto-correlation, i.e. around 5
hours. Fig. 4(b) shows that recent data of aforementioned
important variables “Wind” and “Temperature” are highly
used for prediction, while “Cloud-cover” is long-term corre-
lated to the target, i.e. around 13 hours. In Fig. 4(c) temporal
importance values are mostly uniform, though “Humid. din-
ning” has short correlation, “Outdoor temp.” and “Lighting
dinning” are relatively long-term correlated to the target.
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Figure 4: Variable-wise temporal importance interpretation. Left
and right panels respectively correspond to IMV-Full and IMV-
Tensor. Different patterns of decays in the temporal importance of
variables are observed, which brings the additional interpretation
of the dynamics of each variable. (Best viewed in color)

4.5. Variable Selection

In this group of experiments, we quantitatively evaluate
the efficacy of variable importance through the lens of pre-
diction tasks. We focus on IMV-LSTM family and RNN
baselines, i.e. DUAL and RETAIN.

Specifically, for each approach, we first rank variables re-
spectively according to the variable importance in IMV-
LSTM, variable attention in DUAL and contribution coeffi-
cients in RETAIN. Meanwhile, we add one more group of
baselines denoted by IMV-Full-P and IMV-Tensor-P. The
label “-P” represents that the Pearson correlation is used to
rank the variables with the highest (absolute) correlation val-
ues to the target and the selected data is fed to IMV-LSTM.

Then we rebuild datasets only consisting of top 50% ranked
variables by respective methods, retrain each model with
these new datasets and obtain the errors in Table 2.

Insights. Ideally, effective variable selection enables the
corresponding retrained models to have comparable errors
in comparison to their counterparts trained on full data in
Table 1. IMV-Full and IMV-Tensor present comparable and
even lower errors in Table 2, while DUAL and RETAIN
have higher errors mostly. Pearson correlation measures
linear relation. Selecting variables based on it neglects non-
linear correlation and is not suitable for LSTM to attain
the best performance. An additional advantage of variable
selection is the training efficiency, e.g. training time of each
epoch in IMV-Tensor is reduced from ∼16 to ∼11 sec.

5. Conclusion and Discussion
In this paper, we explore the internal structures of LSTMs
for interpretable prediction on multi-variable time series.
Based on the hidden state matrix, we present two realiza-
tions i.e. IMV-Full and IMV-Tensor, which enable to infer
and quantify variable importance and variable-wise tem-
poral importance w.r.t. the target. Extensive experiments
provide insights into achieving superior prediction perfor-
mance and importance interpretation for LSTM.

Regarding high order effect, e.g. variable interaction in
data, it can be captured by adding additional rows into hid-
den state matrices and additional elements into importance
vectors accordingly. This will be the future work.
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6. Appendix
6.1. Interpretable Multi-Variable LSTM

Proof of Lemma 3.3

Proof. For simplicity, we ignore the data instance index m in the following proof.

The log-likelihood of the target conditional on input variables is defined as:

log p(yT+1 |XT ) = log

N∑
n=1

p(yT+1, zT+1 = n|XT )

≥
N∑

n=1

qn log p(yT+1|zT+1 = n,XT ) Pr(zT+1 = n,XT )− qn log qn

=

N∑
n=1

qn[log p(yT+1|zT+1 = n,XT ) + log Pr(zT+1 = n,XT )] + qn log qn − 2qn log qn

(14)

Based on Gibbs inequality, we can have

N∑
n=1

qn log qn ≥
N∑

n=1

qn log Pr(zT+1 = n|I) (15)

Since I ∈ RN
≥0,
∑N

n=1 In = 1, it can parameterize a categorical distribution on zT+1.

Then introducing Eq. 15 into Eq. 14, we can obtain

log p(yT+1 |XT ) ≥
N∑

n=1

qn[log p(yT+1|zT+1 = n,XT ) + log Pr(zT+1 = n,XT )] + qn log Pr(zT+1 = n|I)− 2qn log qn

≈ Eqn [ log p(yT+1, | zT+1, = n,hn
T ⊕ gn)] + Eqn [ log Pr(zT+1, = n |h1

T ⊕ g1, · · · ,hN
T ⊕ gN )]

+ Eqn [ log Pr(zT+1, = n | I)]− 2qn log qn

(16)

During the EM process, after the E-step, 2qn log qn will be a constant and is not involved in the optimization process. In the
M-step, minimizing the negative log-likelihood amounts to minimize the loss function as follows:

L(Θ, I) =−
M∑

m=1

Eqnm
[ log p(yT+1,m | zT+1,m = n,hn

T ⊕ gn)]

− Eqnm
[ log Pr(zT+1,m = n |h1

T ⊕ g1, · · · ,hN
T ⊕ gN )]

− Eqnm
[ log Pr(zT+1,m = n | I)]

6.2. Experiments

In this part, we provide complementary experiment results as well as the insights from the results.

NASDAQ is the dataset from (Qin et al., 2017). It contains 81 major corporations under NASDAQ 100, as exogenous time
series. The index value of the NASDAQ 100 is the target series. The frequency of the data collection is minute-by-minute.
The first 35,100, the following 2,730 and the last 2,730 data points are respectively used as the training, validation and test
sets.
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Figure 5: IMV-LSTM on NASDAQ dataset. (Best viewed in color)
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Table 3: RMSE and MAE with std. errors

Dataset NASDAQ
STRX 0.41± 0.01, 0.35± 0.02

ARIMAX 0.34± 0.02, 0.23± 0.03
RF 0.31± 0.02, 0.27± 0.03

XGT 0.28± 0.01, 0.23± 0.02
ENET 0.31± 0.03, 0.21± 0.01
DUAL 0.31± 0.003, 0.21± 0.002

RETAIN 0.12± 0.07 , 0.11± 0.06
IMV-Full 0.27± 0.01, 0.23± 0.01

IMV-Tensor 0.09± 0.005, 0.07± 0.004

6.2.1. PREDICTION PERFORMANCE ANALYSIS

6.2.2. MODEL INTERPRETATION

In the following Table 4, 5, and 6, we list the full ranking of variables of the datasets by each approach. Variables associated
with the importance or attention values are ranked in decreasing order.

Table 4: Variable importance ranking by IMV-LSTM on NASDAQ dataset.

Dataset Method Rank of variables according to importance

NASDAQ
IMV-LSTM ’ADSK’, 0.00023858716, ’PAYX’, 0.00023869322, ’AAL’, 0.00023993119,

’MYL’, 0.00024015515, ’CA’, 0.00024144033], ’FOX’, 0.00024341498, ’EA’,
0.00024963205], ’BIDU’, 0.00025009923, ’MCHP’, 0.00025015706, ’QVCA’,
0.00025018162, ’NVDA’, 0.00025088928, ’WBA’, 0.00025147066, ’LRCX’,
0.00025165512, ’TSCO’, 0.00025247637, ’CTSH’, 0.00025284023, ’CSX’,
0.00025417344, ’COST’, 0.00025498777, ’BIIB’, 0.00025547648, ’LBTYA’,
0.00025680827, ’SIRI’, 0.00025686354, ’ADBE’, 0.00025687047, ’MDLZ’,
0.00025788756, ’LBTYK’, 0.00025885308, ’INTC’, 0.00025894548, ’TSLA’,
0.0002592771, ’WFM’, 0.00025941888, ’SBUX’, 0.00025953245, ’AVGO’,
0.00026012328], ’CTRP’, 0.00026024296, ’AMZN’, 0.00026168497, ’ALXN’,
0.00026173133, ’AMGN’, 0.0002617908, ’GILD’, 0.0002619058, ’VOD’,
0.00026195042, ’ROST’, 0.00026237246, ’NXPI’, 0.0002624988, ’KHC’,
0.0002625609, ’ADP’, 0.0002626155, ’WDC’, 0.00026269013, ’QCOM’,
0.00026288, ’TMUS’, 0.00026333777, ’AMAT’, 0.00026334616, ’AKAM’,
0.00026453246, ’PCAR’, 0.00026510606, ’CERN’, 0.00026535543, ’VRTX’,
0.00026579297, ’MU’, 0.00026719182, ’MAR’, 0.00026789604, ’TXN’,
0.00026821258, ’GOOGL’, 0.0002684545, ’ESRX’, 0.00026995668, ’ATVI’,
0.0002703378, ’STX’, 0.0002708045, ’FAST’, 0.00027182887, ’EXPE’,
0.0002747627, ’CELG’, 0.00027897576, ’PYPL’, 0.00027971127, ’MXIM’,
0.0002802631, ’NFLX’, 0.00028330996, ’BBBY’, 0.00028975168, ’SYMC’,
0.0002932911, ’CMCSA’, 0.00031882498, ’SWKS’, 0.00034903747, ’DLTR’,
0.0004099159, ’YHOO’, 0.0004359138, ’VIAB’, 0.00046212596, ’Auto-
regressive’, 0.0004718905, ’MAT’, 0.0008193875, ’MSFT’, 0.002350653,
’ADI’, 0.0035426863, ’DISH’, 0.0056709386, ’AAPL’, 0.007597621, ’EBAY’,
0.008922806, ’JD’, 0.03449823, ’FB’, 0.056254942, ’XLNX’, 0.09711476,
’CSCO’, 0.09782402, ’DISCA’, 0.108503476, ’NCLH’, 0.11029968, u’TRIP’,
0.12302372, ’FOXA’, 0.14510903, ’NTAP’, 0.18010232
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Table 5: Variable importance ranking by DUAL and RETAIN methods on NASDAQ dataset.

Dataset Method Rank of variables according to importance

NASDAQ
DUAL ’NXPI’, 0.003557, ’QCOM’, 0.003564, ’FOX’, 0.003566, ’NTAP’, 0.003566,

’CELG’, 0.003566, ’FOXA’, 0.003567, ’PAYX’, 0.003567, ’AAPL’, 0.003567,
’WFM’, 0.003567, ’ADSK’, 0.003567, ’SBUX’, 0.003567, ’STX’, 0.003567,
’AKAM’, 0.003567, ’DISH’, 0.003567, ’AVGO’, 0.003567, ’XLNX’, 0.003567,
’AAL’, 0.003567, ’FAST’, 0.003567, ’TMUS’, 0.003567, ’LRCX’, 0.003567,
’NCLH’, 0.003567, ’MCHP’, 0.003567, ’MSFT’, 0.003567, ’MU’, 0.003567,
’NFLX’, 0.003567, ’NVDA’, 0.003567, ’PCAR’, 0.003567, ’SIRI’, 0.003567,
’MAR’, 0.003567, ’TXN’, 0.003567, ’ROST’, 0.003567, ’CMCSA’, 0.003567,
’ADI’, 0.003567, ’ADP’, 0.003567, ’DISCA’, 0.003567, ’AMAT’, 0.003567,
’WDC’, 0.003567, ’CSX’, 0.003567, ’WBA’, 0.003567, ’GOOGL’, 0.003622,
’COST’, 0.003678, ’INTC’, 0.003712, ’CTSH’, 0.003908, ’BBBY’, 0.004027,
’TRIP’, 0.004881, ’MAT’, 0.004956, ’ATVI’, 0.005121, ’LBTYK’, 0.00523,
’CERN’, 0.00524, ’CTRP’, 0.005283, ’ALXN’, 0.00536, ’VOD’, 0.005369,
’VRTX’, 0.005433, ’LBTYA’, 0.005445, ’MXIM’, 0.00554, ’BIIB’, 0.005554,
’EBAY’, 0.005555, ’BIDU’, 0.005605, ’FB’, 0.005654, ’VIAB’, 0.005685,
’GILD’, 0.005695, ’AMGN’, 0.005716, ’MYL’, 0.005737, ’YHOO’, 0.006166,
’KHC’, 0.006555, ’AMZN’, 0.006605, ’CSCO’, 0.007836, ’ESRX’, 0.010614,
’SWKS’, 0.012777, ’MDLZ’, 0.017898, ’CA’, 0.02198, ’EXPE’, 0.024373,
’QVCA’, 0.026462, ’EA’, 0.027808, ’TSLA’, 0.043082, ’ADBE’, 0.043829,
’JD’, 0.071079, ’SYMC’, 0.081596, ’PYPL’, 0.087612, ’DLTR’, 0.119737,
’TSCO’, 0.122887

RETAIN ’DLTR’, 0.000866, ’QVCA’, 0.001128, ’TSLA’, 0.00119, ’PYPL’, 0.00128, ’EA’,
0.001439, ’EXPE’, 0.001502, ’CA’, 0.001713, ’TSCO’, 0.001737, ’SYMC’,
0.002334, ’ADBE’, 0.00252, ’JD’, 0.002607, ’AMZN’, 0.003367, ’CSCO’,
0.003543, ’KHC’, 0.003996, ’CTSH’, 0.004695, ’NXPI’, 0.004865, ’EBAY’,
0.004963, ’SWKS’, 0.005011, ’MXIM’, 0.005135, ’MYL’, 0.005541, ’COST’,
0.006052, ’BIDU’, 0.006534, ’GOOGL’, 0.006906, ’INTC’, 0.007153, ’GILD’,
0.007212, ’ESRX’, 0.007512, ’NTAP’, 0.007695, ’QCOM’, 0.008037, ’CELG’,
0.008168, ’MDLZ’, 0.008829, ’AMGN’, 0.008998, ’FOX’, 0.009943, ’VIAB’,
0.010123, ’AAPL’, 0.010157, ’FB’, 0.010359, ’YHOO’, 0.010744, ’PAYX’,
0.010899, ’BBBY’, 0.01117, ’AKAM’, 0.012054, ’BIIB’, 0.012069, ’NFLX’,
0.012266, ’ADSK’, 0.012319, ’DISH’, 0.012338, ’LBTYA’, 0.012697, ’FOXA’,
0.01282, ’MCHP’, 0.012833, ’WFM’, 0.012869, ’STX’, 0.012887, ’VRTX’,
0.013318, ’SBUX’, 0.013458, ’VOD’, 0.013798, ’ALXN’, 0.013878, ’CTRP’,
0.013963, ’SIRI’, 0.01475, ’CERN’, 0.014777, ’LBTYK’, 0.014799, ’ATVI’,
0.015651, ’AVGO’, 0.016382, ’CMCSA’, 0.016531, ’TXN’, 0.016977, ’LRCX’,
0.017131, ’AMAT’, 0.017378, ’ROST’, 0.017399, ’MU’, 0.018045, ’TRIP’,
0.018236, ’MAT’, 0.018297, ’Auto-regressive’, 0.018626, ’WDC’, 0.019083,
’DISCA’, 0.019233, ’FAST’, 0.019392, ’CSX’, 0.019734, ’WBA’, 0.019984,
’AAL’, 0.021188, ’ADI’, 0.021215, ’NCLH’, 0.022932, ’NVDA’, 0.022994,
’TMUS’, 0.024187, ’MSFT’, 0.026354, ’ADP’, 0.028515, ’MAR’, 0.028783,
’PCAR’, 0.029459, ’XLNX’, 0.03248
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Table 6: Variable importance ranking on PLANT and SML datasets.

Dataset Method Rank of variables according to importance

PLANT
IMV-LSTM ’Dew-point’, 0.040899094, ’Wind-bearing’, 0.04476319, ’Pressure’,

0.06180005, ’P-temperature’, 0.07244386, ’Auto-regressive’, 0.1083069,
’Temperature’, 0.11868146, ’Irradiance’, 0.12043289, ’Humidity’, 0.13192631,
’Cloud-cover’, 0.14283147, ’Wind-speed’, 0.15791483

DUAL ’Irradiance’, 0.06128826, ’Dew-point’, 0.066655099, ’Temperature’,
0.071131147, ’Wind-speed’, 0.094427079, ’Wind-bearing’, 0.106529392,
’P-temperature’, 0.115000054, ’Pressure’, 0.115962856, ’Cloud cover’,
0.144996881, ’Humidity’, 0.224009201

RETAIN ’Dewpoint’, 0.031317, ’Temperature’, 0.037989, ’Wind-bearing’, 0.044226,
’Wind-speed’, 0.052027, ’P-temperature’, 0.053034, ’Cloud cover’, 0.138427,
’Irradiance’, 0.142899, ’Auto-regressive’, 0.143269, ’Humidity’, 0.172893,
’Pressure’, 0.183919

SML
IMV-LSTM ’Outdoor temp.’, 0.008530081, ’Outdoor humidity’, 0.0120737655, ’Sun irradi-

ance’, 0.012943255, ’CO2 dining’, 0.01563413, ’Sunlight in south’, 0.01569774,
’Sun dusk’, 0.015769556, ’Wind’, 0.015868865], ’Forecast temp.’, 0.015990425,
’Sunlight in west’, 0.01609429, ’Lighting dining’, 0.016338758, ’Humid.
dining’, 0.016379833, ’Sunlight in east’, 0.016386982, ’Auto-regressive’,
0.016530316, ’Temp. dining’, 0.01663947, ’Lighting room’, 0.18322693, ’CO2
room’, 0.26715645, ’Humid. room’, 0.33873916

DUAL ’Humid. room’, 0.059424, ’Humid. dining’, 0.059656, ’Outdoor humidity’,
0.059803, ’Temp. dining’, 0.059878, ’Sun dusk’, 0.060408, ’Sunlight in south’,
0.061626, ’Wind’, 0.061629, ’Sunlight in east’, 0.062792, ’Lighting room’,
0.063381, ’Forecast temp.’, 0.063503, ’Sunlight in west’, 0.063832, ’CO2 room’,
0.064149, ’CO2 dining’, 0.064383, ’Sun irradiance’, 0.064703, ’Lighting dining’,
0.0651, ’Outdoor temp.’, 0.065733

RETAIN ’Humid. dining’, 0.012169, ’Humid. room’, 0.014563, ’Sunlight in south’,
0.018446, ’Lighting room’, 0.018732, ’Outdoor humidity’, 0.019388, ’Sunlight
in west’, 0.02219, ’Sunlight in east’, 0.036744, ’CO2 room’, 0.036864, ’CO2
dining’, 0.037174, ’Sun dusk’, 0.040011, ’Sun irradiance’, 0.04075, ’Wind’,
0.041191, ’Lighting dining’, 0.054166, ’Forecast temp.’, 0.133079, ’Outdoor
temp.’, 0.144314, ’Auto-regressive’, 0.164673, ’Temp. dining’, 0.165543
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6.3. Discussion

In this part, we summarize the insights from the experiments.

Prediction performance For multi-variable data, capturing individual variable’s behaviors and their interaction is the
key for both prediction and interpretation. Conventional hidden states in standard LSTMs consume the data from all input
variables at each step, while our IMV-LSTM family decomposes the hidden states by defining variable data flows for each
hidden state element.

In the experiments, IMV-Full and IMV-Tensor outperform baselines using the traditional hidden states. Multi-variable
data potentially carries different dynamics. Conventional hidden states mix the data of all input variables, thereby failing
to explicitly capture individual dynamics. In the multi-variable setting, these opaque hidden states are a burden to both
prediction and interpretation.

On the contrary, IMV-Tensor models individual variables and then uses mixture attention to capture the variable interaction
by variable-wise hidden states. It achieves superior prediction performance and enables the interpretability on both temporal
and variable levels.

Effectiveness of importance values For LSTM networks on multi-variable data, importance values inherently learned by
the network are more suitable for retaining useful variables for predicting.

By choosing the variables based on the learned importance value, IMV-LSTM family mostly retains the prediction
performance and presents lower prediction errors on two datasets. The importance value in IMV-LSTM is derived during
the training and therefore it is able to effectively identify the variables used by IMV-LSTM to minimize the loss function, i.e.
maximize the prediction accuracy.

Pearson correlation variable selection leads to the quality loss in prediction performance, i.e. higher errors. Pearson
correlation measures the linear correlation and pre-selecting variables based on it neglects the potential non-linear correlation
in data indispensable for LSTMs to capture.


	1 Introduction
	2 Related Work
	3 Interpretable Multi-Variable LSTM
	3.1 Network Architecture
	3.2 Mixture Attention
	3.3 Learning to Interpret and Predict

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Evaluation Setup
	4.3 Prediction Performance
	4.4 Interpretation
	4.5 Variable Selection

	5 Conclusion and Discussion
	6 Appendix
	6.1 Interpretable Multi-Variable LSTM
	6.2 Experiments
	6.2.1 Prediction performance analysis
	6.2.2 Model Interpretation

	6.3 Discussion


